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The evolution of the return current induced by a charged particle beam in a magnetized plasma is 
studied. The beam current is perpendicular to the background magnetic field. The return current is 
shown to depart from the beam along the background magnetic field with a whistler rather than a 
diffusion or an Alfvin velocity. In a plasma bounded by two conductors the return current oscillates 
with the whistler period. Analytical expressions for the evolution of the magnetic field and of the 
plasma return current are derived for a beam with a finite width and with various rise time 
dependences. When the whistler time is shorter than the rise time of the beam current, the plasma 
return current does not grow beyond the whistler time. 

I. lNTRODlJCTlON 

The generation and the decay of plasma return currents 
due to the injection of a charged particle beam is a long 
studied subject.le4 The plasma return current forms in a few 
plasma periods and it decays in the magnetic field diffusion 
time tD= (47rL2/c2 vc) (c is the light velocity, L is the char- 
acteristic length of the system, and vc is the collisional re- 
sistivity). 

The decay of the plasma return current induced by the 
injection of a charged particle beam into a magnetized 
plasma, was studied by Berk and Pearlstein.’ Assuming that 
there are no variations along the background magnetic field, 
they showed that when the beam propagates perpendicular to 
the background magnetic field, the decay of the return cur- 
rents is determined by the ion dynamics. Fast magnetosonic 
waves propagate across the background magnetic field and 
the resulting characteristic decay time is t,=L/V, (VA is the 
Alfven velocity). For plasmas of low collisionality this time 
is much shorter than tD , and thus the plasma return current 
decreases faster and the self-magnetic field of the beam ap- 
pears faster than when the magnetic field evolves due to 
diffusion only. When the beam propagates along the back- 
ground magnetic field the decay of the plasma return current 
is not influenced by the ion dynamics and the decay time is 
tD. 

The penetration of an external magnetic field into a mag- 
netized plasma along the background magnetic field has re- 
cently been analyzed.5 The external magnetic field was as- 
sumed to be generated in the vacuum adjacent to a plasma, 
by currents that flow outside the plasma. It was shown that if 
the background magnetic field has a component normal to 
the plasma-vacuum boundary, the magnetic field in the 
vacuum propagates into the plasma along the background 
magnetic field on the whistler time scale rather than on the 
diffision time scale. The whistler time scale is 
t,=47rL21c”rt, where s=BJnec (Bb is the background 
magnetic field, n the plasma density). The whistler propaga- 
tion is governed by the electron rather than by the ion dy- 
namics. The plasma pushing becomes relevant only when the 
magnetic field propagates over a distance of the order of the 
ion skin depth. 

The whistler propagation has also been suggested’ as the 

mechanism responsible for the observed fast penetration into 
a charge-neutralized ion beam of a magnetic field across 
which the beam propagates. The two-dimensional linearized 
problem has been solved in the rest frame of the beam and a 
whistler propagation of the magnetic field has been demon- 
strated. There also seems to be direct experimental evidence 
of this whistler propagation of the external magnetic field 
into a charged-neutralized ion beam.’ 

In the present paper we study, as was studied in Ref. 1, 
the decay of the plasma return current induced by the injec- 
tion of a charged particle beam into a magnetized beam. 
However, contrary to Ref. 1, we allow variations along the 
background magnetic field. Similarly to the problems treated 
in Refs. 5 and 6, we show that, due to these variations, the 
electron, rather than the ion, dynamics is dominant, as long 
as L<c/w,~ (the ion skin depth). The magnetic field then 
propagates along the background magnetic field as a whistler 
wave, with a velocity higher than the Alfven velocity. The 
decay of the return current is on the whistler time scale tW. 

Charged particle beams are injected into magnetized 
plasmas of a characteristic length shorter than the ion skin 
depth, in several plasma devices. In a magnetically insulated 
ion diode some of the electrons emitted from the cathode 
flow through the magnetized anode plasma.8 In the current- 
toggled plasma opening switch, electrons emitted from the 
cathode are injected into the plasma that is immersed in the 
magnetic field of the slow field coil.’ In certain schemes for 
ion-driven inertial confinement fusion, a charged-neutralized 
ion beam is focused by a solenoidal magnetic lens.‘u The 
present paper may be relevant to the evolution of the plasma 
return current in such devices. 

We consider a one-dimensional (1-D) model problem. A 
charged beam of a specified current propagates in the plasma 
across a background magnetic field. This configuration is 
similar to the configuration analyzed in the 1-D model prob- 
lem of Ref. 1, but while in Ref. 1 the variations were normal 
to the background magnetic field, we allow variations along 
the background magnetic field only. The simplified 1-D ge- 
ometry enables us to describe analytically the evoIution of 
the plasma return current for various rise times and spatial 
distributions of the specified beam current. Concurrently 
with our preliminary research,‘* the two-dimensional (2-D) 
evolution, that is also affected by the finite length of the 
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beam and by the nonuniformity of the background magnetic 
field, has been studied numerically by Oliver and Sudan.” 

In Sec. II we briefly review the model for the whistler 
wave magnetic field propagation in plasmas due to the Hall 
field.5 In Sec. III the 1-D model for the plasma response to a 
charged beam is presented. In Sec. IV the return current and 
the magnetic field are calculated for the case of an infinitely 
narrow beam of a current that rises either as a step function 
in time or linearly in time. In Sec. V the return current and 
the magnetic field are calculated for a beam of a finite width. 
Finally, Sec. VI is dedicated to conclusions. 

II. WHISTLER WAVE PROPAGATION OF THE 
MAGNETIC FIELD IN PLASMAS 

We here briefly review the model presented in Ref. 5 for 
the fast magnetic field propagation due to the Hall field in a 
magnetized plasma of low collisionality. 

The time scale for the process under consideration is 
assumed to be longer than the electron cyclotron period and 
shorter than the ion cyclotron period, thus the ions are as- 
sumed to be immobile, and the magnetic field propagation is 
caused by the electrons. The displacement current is ignored. 
The governing equations are Faraday’s law, 

VxE= -f d,B, 

Amp&e’s law, 

VxB=?J, 
C 

and Ohm’s law with the Hall field, 

(1) 

(2) 

JxB 
E= vcJ+z (3) 

Here E, B, and J are the electric field, the magnetic field, and 
the current density, respectively. A magnetized plasma with a 
slab geometry is considered. All quantities are assumed to 
depend only on the x coordinate, parallel to a background 
magnetic field B,=Bs. A magnetic field B=B,j is 
switched on as a step function in time at t =0 at the vacuum- 
plasma boundary that is located at x=0 (i.e., one face of the 
plasma slab). The plasma fills a region that is bounded on the 
other face of the slab at x=L by a conductor (the case of a 
semi-infinite plasma was also considered in Ref. 5). The 
problem turns out to be linear irrespective of the relative 
intensities of the background and the propagating magnetic 
fields. The equation for the propagating magnetic field 
B= B,+ iB,. is a complex diffusion equation, 

C2 
d,B =G q$B, (4) 

where 7~’ vc+ivH (%=B,lnec). It has been shown5 that 
for vrlc/ ~~41 the magnetic field propagates with the whistler 
characteristic time t,=4,rrL2/c2 m rather than with the 
much longer diffusion time tD= 47rL2/c277,. Because of the 
analogous roles of rl, and of 17~ in the definitions of the 
diffusion and the whistler times, 77~ is named “Hall resistiv- 
ity,” although one should remember that the Hall field does 

not cause any dissipation. Furthermore, the fast evolution 
can also occur when Q=O and the dissipation then is zero. 

For later purposes we here write the solution of Eq. (4) 
for the magnetic field in a finite plasma slab, 

1 7Tx 
n+F 7 1 1 

(5) 

Ill. ONE-DIMENSIONAL BEAM MODEL 

In this section we derive general expressions for the evo- 
lution of the plasma return current, that is induced by a 
charged beam of a specified current density. In the next sec- 
tions we use these expressions for some particular cases. As 
in the previous section, the governing equations are Fara- 
day’s law [Eq. (l)], Amp&e’s law, 

VxB=T (Jp+Jb) 

(where now the current density J=Jp+Jb is the sum of the 
beam current density J,, and the plasma current density J,) 
and the equation for the plasma current density 

J,xB 
E= vcJp+~ 

Also as in the previous section, we assume that the plasma is 
immersed in a uniform background magnetic field Bh=B$, 
and that all quantities depend only on the x coordinate, along 
the background magnetic field. The beam of a current 
Z,(t) = I,Y( t) flows in the z direction, and its current density 
is Jb=Jbf. The beam density is assumed to be much smaller 
than the plasma density n. 

We define A =AZ+ iA, (where A stands for E, J, or B). 
Equation (7) is rewritten as 

E=(vcfivdJp. (8) 

Taking the derivative of Eq. (6) with respect to time, and 
using Eqs. (1) and (8), we obtain the following equation for 
the electric field 

d2E 47~ 
-g =F 8, i 

E 
Jb+----- i %+ivH . 

(9) 

We denote by A(s) the Laplace transform of A(t), where 
again A stands for E, J, or B. The equation for E(x,s) is 

d2E(x,s) 47r.s E(x,s) 
dx2 =F J&G)+----- 

i i %+ivH * 
(10) 

We assumed that E(x,t=O)=O, since J,(x,t<O)=O. If the 
plasma is located between x= -L and x = L, the plasma re- 
turn current is 

(11) 
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where L - ’ [A(s)] is the inverse Laplace transform of A(s). As expected, since Eq. (10) and the boundary conditions (13) 
Following Eq. (6), the plasma return current can also be writ- are symmetrical with respect to the plane at x=0, so is the 
ten as electric field (17). From Eq. (11) we obtain 

1(r)= ; B1!,-~,Y(f). l’ I 
We choose to address the problem in which the plasma is 

bounded by conductors at x= ItL, and therefore the bound- 
ary conditions are 

E(x= +L,t)=O. (13) 

Equation (lo), with a specified beam current density, and the 
boundary conditions (.13) determine E(x,s). Once E(x,s) is 
found, the plasma current density can be found from Eq. (8). 
In order to find the magnetic field, one has to solve Eq. (6), 
with the specified beam current density and the calculated 
plasma current density, and, in addition, to require that the 
magnetic field flux between the two conducting boundaries 
be zero. The vanishing of the magnetic field flux at t>O 
results from the vanishing of the magnetic field flux at r=O 
and from the conservation of the magnetic field flux between 
the two conducting boundaries resultings from Eq. (13). 

For simplicity, we consider beams of current densities 
that are symmetrical with respect to the plane at x=0. Both 
Eq. (IO) and the boundary conditions (13) are then sym- 
metrical with respect to this plane. As a result, the electric 
field and the plasma current density turn out to be symmetri- 
cal as well, while the magnetic field turns out to be antisym- 
metrical. 

In the next sections we consider some particular beam 
current densities. 

IV. INFINITELY NARROW BEAM 

In this section the beam current is assumed to be local- 
ized at x=0, i.e., 

J&,f)=Z~,Y(t~S(x~. (14) 

Integrating Eq. (10) from x = - E to x = E we obtain: 

for c--+0, while the equation for Ix]>0 is 

(16) 

We solve Eq. (10) with the beam current density (14) and the 
boundary conditions (13). Alternatively, we may solve Eq. 
(16) for x>O and for x<O with the boundary conditions (13), 
and then match the two solutions at x=0, using the jump 
condition (15). We find that 

E(x,s)= - 
2rrsf,,Y(s) 

& cosh(kL) sinh[k(L-I-d)l~ (17) 

where 

k-G* 

t(t)=L-’ I,,Y(s) l- i ! (18) 

For the time dependence let us examine two cases, a beam 
current switched on as a step function in time, i.e., Y(t) 
= e(t) (the Heaviside function), and a beam current that is 
linearly rising in time, i.e., Y(t)=tlt,, . 

A. Beam current switched on as a step function in 
tlme 

The Laplace transform of Y(t) = 0(t) is 

Y(s)=;. (19) 

Using Eqs. (18) and (19), we find that the plasma return 
current is’$ 

Cc (-1)” 
f(+-$ 2 - 

,t=o (n+ $3 

i 
(n-k $=7rc= 

Xev - 4~2 ! (?&+ivH)f . 
(20) 

The evolution of the magnetic fleld in the plasma due to 
the infinitely narrow beam is identical to the evolution of the 
magnetic field in the plasma due to a magnetic field that rises 
at the plasma-vacuum boundary at x=0. This identity holds 
for any time-dependent beam current lb(t) and any time- 
dependent imposed magnetic field Be(t) at x=0, as long as 
Ibct) = - cB,,( t)/2 rr. Indeed, using Eqs. (2) and (5) we can 
calculate the return current in the plasma that is induced by a 
magnetic field that is switched on as a step function in time 
at the plasma boundary. As expected, the calculated current 
turns out to be equal to the current expressed in Eq. (ZO), the 
return current due to the infinitely narrow beam. The evolu- 
tion of the magnetic field in the plasma, as a resuIt of a beam 
described by Eq. (14) that is switched on as a step function in 
time, is also governed by Eq. (5). Figure 1 shows the mag- 
netic field in the plasma versus x/L due to a current of a 
narrow beam that is switched on at x =0 as a step function in 
time at t=O. Since the beam is narrow (its width is much 
narrower than L), the evolution of the magnetic field is de- 
scribed approximately by Eq. (5), except at the region in the 
vicinity of x=0. In Sec. V we will discuss the effects of the 
finite width of the beam. It is seen in the figure that the 
velocity of the magnetic field propagation is much higher 
than the diffusion velocity. The return current has not only a 
z component (the only component it has when the colIisiona1 
resistivity is dominant), but also a y component. 

At the early time shown in Fig. 1, t = 0.0 1 tW, the mag- 
netic field has not yet reached the conducting boundary at 
x=L. Therefore, the presence of the conductors has not yet 
affected the evohrtion of the magnetic field. At later times, 
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FIG. I. The magnetic field, its magnitude and its z  and y components, as a 
function of x/L at t/to=0.0005. The magnetic field is induced by a narrow 
beam nL = 100 that is switched on as a step function in time at t=O [Eq. 
(34)]. Here h/g=20. 

reflections from the conducting boundaries generate standing 
waves. When there are no collisions, the magnetic field is 
periodic in time with a period tl/ = 32L2/c2 r,+, . This period 
is the time it takes for the fundamental, slowest, mode to 
propagate to the boundary at x = L and to be reflected back- 
wards to x=0. Due to a finite collisionality, the amplitude of 
the oscillations decreases in time on the resistive time scale. 

It can easily be seen from Eq. (20) that, since 
(2/14X,“, , [( - l)“l(n + $)] = 1, the initial plasma return cur- 
rent cancels the beam current exactly, and therefore 
Z( 0) = - I,. This instantaneous current neutralization is valid 
only if the rise time is much longer than the electron plasma 
period. Otherwise, the electron inertia has to be taken into 
account. It will be shown in Sec. V that an instantaneous 
current neutralization occurs for beams of arbitrary time de- 
pendence and width, as long as the electron inertia may be 
neglected. 

B. Beam current linearly rising in time 

In this case Y(t) = t/t,, and therefore 

Y(s)=& * (21) 
0 

Using Laplace transform properties, we find the plasma re- 
turn current in this case as the integral in time of the plasma 
return current expressed in Eq. (20) multiplied by l/t,. The 
calculated plasma return current is 

Z(t)= 
81uL2 

to~2C2h+h) 

( 
(n-t pm2 

Xexp - 4L2 (7#?c-l-+7&)t 1 1 -f . (22) 

RETURN CURRENI 

6r-~-‘l 

t/tD 

FIG. 2. A linearly rising in time beam current and the z and y components 
of the plasma return current as a function of time. The beam is infinitely 
narrow [Eq. (22)]. Here r,+,/vC= 10. 

A beam current that is linearly rising in time and the 
resulting plasma return current [Eq. (22)j are shown in Fig. 
2. As seen in the figure, for times t< tW= 0.1 tD the plasma 
return current is approximately equal to the beam current. At 
ts tw the z component of the plasma return current reaches 
its maximal value 

where Vw=c2%/4rL. At later times, when t>t,, the re- 
turn current does not grow further, even though the beam 
current does. The return current then oscillates with an am- 
plitude that equals I,. Therefore, the whistler mechanism 
determines a time tW , beyond which the plasma return cur- 
rent stops growing. The plasma return current at times t*tw 
is much smaller than the beam current at these times, and is 
approximately equal to the beam current that flows at t = t w. 
Although this maximal current was found here for a beam 
current linearly rising in time, a similar maximal current is 
expected for any monotonically increasing in time beam cur- 
rent. 

The maximal return current calculated here, I,, should 
be compared to the maximal return current calculated in Ref. 
1  for a beam of the same current density, as discussed here, 
but when variations were allowed only perpendicular to the 
background magnetic field. It has been shown there that, as a 
result of a  fast magnetosonic wave, the return current reaches 
a maximal value IA = Z,&/V,t, (VA is the Alfvdn velocity) at 
t=tA, and does not grow further. We  assume that the dis- 
tance from the beam to the conducting boundaries perpen- 
dicular to the background magnetic field is L as well. If 
L<c/o,,~, the whistler time tW is shorter than the Alfvdn 
time tA. Therefore, if variations are allowed both perpen- 
dicular to and along the background magnetic field, the 
dominant mechanism is the whistler propagation of the re- 
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turn current along the field, that we have described here. The where Bo=2rIo/c and the plus and minus signs correspond 
maximal plasma return current is not IA, but rather the to x>O and x<O, respectively. The Laplace transform of the 
smaller current I,. plasma return current is 

V. A FIMTE WIDTH BEAM 

We here assume a beam of a finite width, a current IO 
and a current density 

JJx,t)= -Z,Y(t)cr 
sinh[ a(L - IX])] 
2[1-cosh(cuL)] ’ (24) 

We note that, by defining the dimensionless parameters 
t’=[(tc2vC)/4rL2], x’=xfL, and E’=(EI&ZOvC), we ob- 
tain from Eq. (9) 

d2 E, = -’ sinh[aL(l- lx’l)] d y(t,) 
x’ 2 l-cosh(crL) I’ 

(25) 

I(s) = - 
loY(s) cosh( aL) a2 k2 

1 - cosh( aL ) - cosh(kL) (u2-kZ +m 

+ cosh( CYL ) 
1 

. (31) 

The remaining return current, the difference between the 
beam current and the plasma return current, flows in the 
conductors as a surface current I,, This surface current is 

i,y(x= ?L,s) = c 
icB(x= TL,s) 

471. - WA 

Using properties of Laplace transforms, we may calcu- 
late A(t) at the limit t-+0, by making the inverse Laplace 
transformation of sA(s), at the limit s--+~, where A is E, .Z, 
or B. Since 

In this form of the equation there are two characteristic pa- 
rameters: CUL and ( s/vC). Laplace transforming Eqs. (9) and 
(24), we obtain an equation for E(x,s): 

a,“- 
4ns 

477,fiVH) ) 
E(x,s) 

2a sinh[a(L - [xl)] 27rs 
1 - cosh( QL ) -g2- usvo. (26) 

The solution of the last equation, with the boundary condi- 
tions (13), is 

E~x,s~=2~0~~Y(~)~ sinM4L-lxl)l 
c2( Cu2-k2) ( 1 - cosh( aL ) 

cy cosh( aL) sinh[k(L - Ix])] 
+k l-cosh(cuL) (27) 

We notice that, in the limit aL+m, the expression (27) is 
reduced to the expression (17). Following Eqs. (8), (24), and 
(27), the total current density is 

J(x,s) = 
277XY(s)aZa sinh[ a(L - IX])] a2 
c2v(a2-k2) - l-cosh(cuL) $ 

a cosh(aL) 
+k 1 -cosh(aLL) (28) 

Using Eq. (6), we find that the magnetic field is 

B=-i?f J dx’. (29) 

Following Eqs. (28) and (29), the Laplace transform of the 
magnetic field is calculated and found to be 

B(x,s) = T 
iBo 

a2Y(s) 
cosh[ a(L - IX])] 

c(a2-k2) 1 - cosh( aL ) 

cosh(crL) cosh[k(L - [xl)] 
-l-cosh(aL) cosh( kL) ’ (30) 

sJ(x,s) = 
27rs2Y(s)cosh(aL) ho 
c”[ 1 -cosh( aL)]k’ ’ (33) 

for all Y(s) such that Y(s)= 4(1/G) and s+m, the total 
current density J(s)=Jb(s)+Jp(s) is zero and the beam 
current is initially neutralized. Therefore, the plasma re- 
sponds to a fast increase of the beam current by a fast for- 
mation of a return current. InitiaIiy, the electric field is large, 
while the magnetic field and the total current are small. 

Let us find the magnetic field and the plasma return cur- 
rent for the case of a beam current switched on as a step 
function in time. We perform the inverse LapIace transfor- 
mation of B(x,s) and of Z(s) for Y(s) = l/s. The calculation 
of the magnetic field is made easier by writing &(c?-k2) as 
[k2/(a2 - k2) + 11. The magnetic field is found to be 

B(x,t)= +iB, 
cosh[ a(L - Ix ( ) ] - co&( aL ) 

1 - cosh( aL) 

2 cosh(aL) 
+7r[l-coSh(*L)J 

m (aL)2 sin[(n+ $71. (x/L)] 
XC 

@=O (n+ h)[(n+ $)W+(aL)2] 

The plasma return current is 

2Z,, cosh( aL) 
Z(t)=rr[l-cosh(o!L)] 

*j. (n+ 9;-:y2;:(nL)zl 2 n 2 
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FIG. 3. The magnetic field due to the current of a narrow beam aL =50 and the induced plasma return current. The beam current is switched on as a step 
function in time at t=O and &vC= 10. (a) The magnitude and the z and y components of the magnetic field due to the beam current only as a function of 
x/L. (b) The magnitude and the t and y components of the plasma return current as a function of time for O<t/fo<0.025, (c) O<t/to<0.25, (d) O<t/to<0.7. 
See E$ (35). 

(35) 

At the limit cul+m expression (34) for the magnetic field 
and expression (35) for the plasma return current are reduced 
to expressions (5) and (20) for the magnetic field and for the 
plasma return current in the case of an infinitely narrow 
beam current. We have previously shown [Eq. (33)] that, for 
arbitrary time dependence, the beam current is initially neu- 
tralized. In the Appendix we show directly from the expres- 
sions (34) and (35) that B(x,r=O)=O and that the initial 
total current is zero for this particular time dependence of the 
beam current, that is switched on as a step function in time. 

We notice that some of the features of the magnetic field 
evolution in the case of the infinitely narrow beam current 
also appear here. These features include the evolution of the 
magnetic field on the whistler time scale and, for ~‘0, the 
periodicity in time of the magnetic field and of the plasma 
return current with a period td/ = 32L2/c2vH. The effect of 
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the finite width of the beam can be seen by comparing the 
narrow beam limit (aL-+m) with the wide beam limit 
(aL-+O). In the narrow beam limit the amplitude of the 
modes in Eqs. (34) and (35) is proportional to ll(n + f), while 
in the wide beam limit the amplitude is proportional to 
l/(n + f)“. Therefore, when the beam is narrow the amplitude 
of the modes decreases slower as a function of the mode 
number. As a result, when the beam is narrow more modes in 
the series (34) and (35) are dominant. The magnetic field and 
the return current then propagate with shorter wavelengths 
and higher frequencies. This effect of the width of the beam 
is demonstrated in Figs. 3 and 4. In the figures the plasma 
return current is shown as a function of time [Eq. (35)] for 
&~=10. In Fig. 3 the beam is narrow, aL =50, while in 
Fig. 4 the beam is wide, aL=O.l. Fast oscillations exist 
when the beam is narrow and they are much less apparent 
when the beam is wide. The beam in Fig. 1, for which the 
magnetic field is shown, is narrow, a-L = 100. 

For the case discussed here, of a beam of a finite width, 
we do not write the explicit expressions for the fields and the 
currents when the beam current is linearly rising in time. 
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FIG. 4. The magnetic field due to the current of a wide beam aL =O.l and the induced plasma return current. The beam current is switched on as a Step 
function in time at t=O and l/v<= 10. (a) The magnitude and the .z and y components of the magnetic field due to the beam current only as a function of 
x/L. (b) The magnitude and the z and y components of the plasma return current as a function of time for O<llf,,<O.OZS, (c) O<t/r,,<O.& (d) O<t/focO.7. 
See Eq. (35). 

However, we mention that these expressions could be found 
by use of an integration in time of the expressions [Eqs. (34) 
and (35)‘j for the fields and the currents when the beam cur- 
rent is switched on as a step function in time. If Y(t)=t/t,, 
it is clear that the amplitude of the mode is reduced by the 
factors [l/(n + f)‘] and [~*/(c*te&] relative to the ampli- 
tude described above. As a result of the first factor, the higher 
modes are less dominant and the more gradual increase of 
the beam current results in a smoother magnetic field and 
plasma return current. The second factor makes the ampli- 
tude of the plasma return current inversely proportional to 
the current rise time to. 

VI. CONCLUSlONS 

In this paper we have studied the effect of the whistler 
waves on the evolution of the plasma return current induced 
by a beam current in a magnetized plasma. We have shown, 
in a simplified 1-D model, that if variations are allowed 
along the background magnetic field, and if the characteristic 

length along this field is smaller than the ion skin depth, the 
whistler mechanism is dominant in the decay of the plasma 
return current. The whistler velocity is then higher than the 
Alfvin velocity, and is also higher than the usually low dif- 
fusion velocity. If the plasma is bounded by conductors, the 
return current in the plasma exhibits whistler oscillations in 
time. The oscillations are damped on the diffusion time. 
When the beam current is monotonically rising in time, the 
plasma return current stops growing beyond the whistler 
time, thus remains small relative to the beam current that 
continues to grow. A finite width and a finite rise time of the 
beam current reduce the amplitudes of the high modes with 
high frequencies, thus smoothing in time, and in space, the 
plasma return current. 

Even though the main physical process is captured by 
our 1-D model, some processes require at least 2-D model- 
ing. These are, for example, the finite length of the beam and 
the nonuniformity of the background magnetic field. 
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APPENDIX: INITIAL VALUES OF THE MAGNETIC 
FIELD AND OF THE CURRENT 

We show here that the magnetic field expressed in Eq. 
(34) satisfies B(x,t=O)=O. This is easily seen by noticing 
that the Fourier series of 

cosh[ cu(L -x)] 
cosh( aL ) 

-1 

expanded between x =0 and x = L is 

cosh(cu(l -x) 
cosh( CUL ) 

-l)sin( (n+f) :x) 

1 1 1 

=-(n+f)(r/L) 
+- 

2 [(n+f)(?TlL)+ia] 

+-1. 1 
2 [(n+;)(alL)-ia] 

ffL 

=-(n+~)P[(n+t)2rr+(CYL)2] * 

Therefore, B(x,r = 0) =O. 
Since the magnetic field is zero at t=O, it is obvious 

from Amp&e’s law that the current density and the current 
are zero at t=O. We show that this is so also by showing that 
the plasma return current expressed in Eq. (35) equals -I,, at 
i =O. The plasma return current at t =0 can be calculated by 
performing the summation of the series. We assume that 
2aLl7Kl and obtain 

I”; E 1 
,*=() (n+h)3~2{1+[aL/rr(n+~)]2} 

2k 

n=O k=O 

n=O k=O 
(2n+ 1yk+37P+3 * (Al) 

On the other hand, 

1 - cosh( aL) 
cosh( aL ) 

=i (-l)k;&;&2k-1 

k = 0 

where E, are the Euler numbers. The term k=O of the last 
sum is 

,i, ;1-,:‘;, =l- 
Therefore, 

IO 
[l -cosh(aL)] 

cosh( aL ) 

2k+2(.-1) k+tl+ 122k+4 

=IO% 5 (aL;2k+3(2n+l)2k+3 . 
k=O n=O 

This expression is identical to Eq. (Al). We therefore obtain 
that [L(r = 0)/Z,] = - 1. The case in which 2aLl70 1 can be 
analyzed in a similar fashion. 
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